Слуховая сенсорная система
Prosimptomy.ru

Медицинский портал

Слуховая сенсорная система

Физиология слуховой сенсорной системы

Физиология слуховой сенсорной системы

Отделы слуховой сенсорной системы и ее роль в познании окружающего мира.

Механизм восприятия звука.

Основные показатели слуховой сенсорной системы, ее возрастные особенности.

Значение слуховой сенсорной системы для спортивной деятельности.

Физиология слуховой сенсорной системы

Слуховая сенсорная система (слуховой анализатор) — второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Слуховая сенсорная система служит для восприятия и анализа звуковых колебаний внешней среды. Она приобретает у человека особо важное значение в связи с развитием речевого общения между людьми. Деятельность слуховой сенсорной системы имеет также значение для оценки временных интервалов — темпа и ритма движений.

Отделы слуховой сенсорной системы и ее роль в познании окружающего мира

Слуховая сенсорная система состоит из следующих разделов:

периферический отдел, который представляет собой сложный специализированный орган, состоящий из наружного, среднего и внутреннего уха;

Рисунок 1.

проводниковый отдел — первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает возбуждение от рецепторов внутреннего уха, отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пар черепно-мозговых нервов) ко второму нейрону в продолговатом мозге и после перекреста часть волокон идет к третьему нейрону в заднем двухолмии среднего мозга, а часть к ядрам промежуточного мозга — внутреннему коленчатому телу;

Рисунок 2.

Схема слуховых проводящих путей и центров:

1 — улитка; 2 — слуховые ядра в продолговатом мозгу; 3,4,5 – подкорковые слуховые центры; 6 — проводящие пути в головном мозгу; 7 — кора височной доли головного мозга

3) корковый отдел — представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле в височной области коры больших полушарий и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими формами информации.

Рисунок 3.

Механизм восприятия звука

Ухо п редставляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, — молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе — перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью — перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава — эндолимфой. В среднем канале расположен звуковоспринимающий аппарат — кортиев орган, в котором находятся рецепторы звуковых колебаний — волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами — волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Основные показатели слуховой сенсорной системы,

ее возрастные особенности

Слуховая сенсорная система начинает функционировать уже с момента рождения, но окончательное структурно-функциональное созревание ее, как и зрительной системы, происходит к 12 — 13 годам.

У новорожденных при действии достаточно громких звуков наблюдаются безусловные реакции, которые проявляются во вздрагивании, закрывании глаз, изменении частоты пульса и дыхания, задержке сосательных движений (если во время кормления ребенка грудью включить громкую музыку, у хорошо слышащего малыша изменяется ритм сосания). Они осуществляются в основном ядрами нижних бугров четверохолмия (подкорковые отделы головного мозга), поскольку не закончено функциональное созревание слуховых центров в коре головного мозга.

Наружное ухо. Наружный слуховой проход у детей раннего возраста короче и уже, чем у взрослых, имеет щелевидную форму, образован только хрящевой тканью. По мере роста ребенка просвет приобретает овальную форму, окостенение его происходит к 12 — 13 годам. Барабанная перепонка у новорожденных толще, чем у взрослых, расположена почти горизонтально (у взрослых она образует с горизонтальной плоскостью угол 45 — 55 °, у детей первых месяцев жизни — 10 — 20°). С возрастом ее размеры увеличиваются незначительно, а положение приближается к положению взрослых к 12 — 13 годам.

Среднее ухо. У новорожденных стенки барабанной полости тонкие, особенно верхняя, отделяющая барабанную полость от полости черепа, В раннем возрасте в стенке имеются отверстия , в этих участках слизистая оболочка барабанной полости прилегает непосредственно к мозговой оболочке. Это представляет о пасность перехода инфекции при воспалительных процессах в барабанной полости на мозговые оболочки, что вызывает их воспаление.

Барабанная полость и слуховая труба у новорожденных могут быть заполнены околоплодной жидкостью , что затрудняет колебания слуховых косточек. Поэтому в первые дни жизни дети могут плохо слышать и реагируют в основном на громкие звуки. Постепенно жидкость рассасывается, барабанная полость и слуховая труба заполняются воздухом, слуховая чувствительность повышается.

Слуховая труба у новорожденных и детей первых месяцев жизни короче и шире, чем у взрослых, расположена почти горизонтально, поэтому инфекция из верхних дыхательных путей при их воспалении быстрее проникает в среднее ухо, вызывая воспаление слизистой оболочки трубы и барабанной полости. Слуховая труба более интенсивно растет на втором году жизни, постепенно суживается ее просвет.

Слуховые косточки имеют размеры, близкие к размерам взрослого человека.

В конце 1-го, начале 2-го второго месяца жизни у ребенка вырабатываются условные рефлексы на звуковые раздражители. Многократное подкрепление какого-либо звукового сигнала (колокольчика, погремушки) кормлением вызывает сосательные движения в ответ на этот раздражитель.

В 2 — 3 месяца ребенок начинает дифференцировать разнородные звуки. Он реагирует на звук движением глаз, поворотом головы в сторону источника звука (если этих реакций не наблюдается, необходимо срочно обратиться к специалисту).

В 3 — 4 месяца ребенок дифференцирует однородные звуки, отличающиеся высотой тона. Дети этого возраста прислушиваются к звукам родного и чужого голоса (аукают, радуются), ищут источник звука глазами при перемещении его в разные стороны.

К 6 месяцам слуховая сенсорная система морфологически довольно хорошо развита, но созревание слуховых центров в коре головного мозга продолжается до 12 -13 лет.

К концу 1-го года ребенок различает элементы речи, интонации голоса

В течение 2-го и 3-го годов жизни в связи с формированием речи происходит дальнейшее развитие слуховой функции, заканчивается формирование речевого слуха, т. е ребенок на слух различает звуковой состав речи. Восприятие звуков речи тесно связано с развитием произносительной стороны речи.

Функциональное развитие слуховой сенсорной системы ускоряется при занятиях музыкой, пением, танцами . На прогулках с детьми родителям и педагогам нужно приучать детей прислушиваться к пению птиц, шорохам леса и другим звукам.

Слуховая чувствительность у детей к высокочастотным звукам выше, чем у взрослых, они воспринимают звуки с частотой до 32000 Гц.

Максимальная слуховая чувствительность отмечается в возрасте 15 — 20 лет, затем она постепенно снижается. После 30 лет хуже воспринимаются высокие звуки, с возрастом это выражено в большей степени (до 40 лет наибольшая чувствительность отмечается в области звуков с частотой 3000 Гц, в возрасте от 40 до 60 лет — 2000 Гц, после 60 лет — 1000 Гц). Кроме того, у пожилых людей нарушается восприятие прерывистой речи или речи, перекрываемой помехами. Чтобы разобрать такую речь в возрасте 25 — 30 лет сила звука должна быть равна 40 — 45 дБ, а в 60 — 70 лет ее нужно увеличить до 65 дБ. Мужчины теряют слух раньше, чем женщины.

Значение слуховой сенсорной системы

для спортивной деятельности

Слуховая сенсорная система имеет особое значение для усвоения музыкального ритма и темпа, в оценке временных интервалов. Выполнение движений под музыку позволяет усовершенствовать чувство ритма на основе взаимодействия проприоцептивных и слуховых сигналов, быстрее формировать и доводить до автоматизма двигательные навыки, повышает эмоциональность и зрелищность движений. Анализ отдельных характеристик движений (темпа, продолжительности отдельных фаз) принадлежит слуховой сенсорной системе. Оценка деятельности отдельных фаз движений базируется на разнице микро интервалов времени между звуковыми сигналами, которые поступают от рецепторов слуховой сенсорной системы.

Читать еще:  Инструкция по применению Кларитромицина

Функция слуховой сенсорной системы дает возможность для оценки продолжительности и частоты отдельных движений. Эта информация важна в коллективных видах спорта, в которых успех зависит от согласованных одновременных действий.

СЛУХОВАЯ СЕНСОРНАЯ СИСТЕМА

Слуховая сенсорная система (слуховой анализатор) — второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) — это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2 и на рис. 12.9 2 .

Строение и функции уха

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она — слуховые косточки

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединенная с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган — звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передает импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

  • 1 См.: Резанова Е.Л., Антонова И.П., Резанов А.А. Указ. соч.
  • 2 См.: Физиология человека: Учебник. В 2 т.
  • 1

Рис. 12.9. Органы слуха и равновесия

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии — мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва (рис. 12.10 [1] ).

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделенные друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3500. Наружные волосковые клетки располагаются в три—четыре ряда; их общее число 12 000—20 000. Каждая волосковая клетка имеет удлиненную

Рис. 12.10. Перепончатый канал и спиральный (кортиев) орган

Канал улитки разделен на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделен от барабанной лестницы базилярной мембраной. В ее составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками

форму; один ее полюс фиксирован на основной мембране, а второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереотипии. Их число на каждой внутренней клетке составляет 30—40, и они очень короткие — 4—5 мкм; на каждой наружной клетке число волосков достигает 65—120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от одного до пяти ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает поступать калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна — около 2-10 -13 Н. Еще более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс, означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее — генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интера- уральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удаленности звука от организма связана с ослаблением звука и изменением его тембра.

Слуховая сенсорная система

Орган слуха — ухо — состоит из трех отделов: наружного, среднего и внутреннего уха (рис. 5.19). Наружное и среднее ухо — это вспомогательные структуры, обеспечивающие улавливание звука и направленное проведение его к слуховым рецепторам, находящимся во внутреннем ухе. Там же находятся рецепторы вестибулярного аппарата, обеспечивающие человеку чувство равновесия. Слуховое восприятие происходит при раздражении рецепторов органа слуха звуковыми волнами определенной частоты, которые улавливаются ушной раковиной.

Звуковые волны представляют собой чередующиеся участки воздуха высокой и низкой плотности (соответственно, сжатия и разрежения), распространяющиеся от источника

Рис. 5.19. Строение уха человека

звука. В воздухе звук распространяется со скоростью 340 м/с, а в воде — в четыре раза быстрее.

Звук характеризуется тремя основными параметрами — силой, высотой и продолжительностью. Сила звука определяется амплитудой колебаний давления звуковой волны — звуковым давлением, измеряемым в ныотонах на квадратный метр (Н/м 2 ). Уровни звукового давления даются в децибелах (дБ). Высота звука определяется частотой колебаний, измеряемой в герцах (Гц). Чем больше частота колебаний, тем выше звук. Человеческое ухо различает звуки в пределах от 20 до 20 000 Гц. Наибольшая чувствительность приходится на диапазон 1000—4000 Гц. Звук, состоящий из колебаний одной частоты, называется тоном. Большинство звуков образовано наложением нескольких частот. Звук, образованный множеством не связанных между собою частот, называется шумом. В музыкальных звуках сочетаются основная частота и несколько сходных с ней.

Слуховые возможности человека довольно ограниченны. Чтобы человеческое ухо смогло воспринять звук, звуковое давление должно достигнуть определенного уровня. Звуковое давление, при котором тон едва слышен, называют слуховым порогом. По мере нарастания звукового давления тон слышится все громче, независимо от частоты. Два тона одинаковой частоты по громкости воспринимаются различно. В то же время два тона разной частоты обычно воспринимаются с различной громкостью даже при равных звуковых давлениях.

При измерении слухового порога методом аудиометрии человеку через наушники предъявляют разные тоны с заведомо подпороговыми значениями, затем медленно увеличивают звуковое давление до тех пор, пока испытуемый не сообщает, что слышит звук. Если порог на несколько децибел выше нормального, это значит, что у обследуемого человека снижена слуховая чувствительность. Все выявленные пороги при различных частотах заносятся в специальную таблицу, в которой вычерчивается графическая характеристика слуховой чувствительности — аудиограмма.

Наружное ухо (ушная раковина и наружный слуховой проход) улавливают и направляют звук к барабанной перепонке. Она воспринимает звуковые волны и приводится ими в ко- л ебател ь н ы е д в и жен и я.

Следующее за барабанной перепонкой среднее ухо расположено в пирамиде височной кости черепа. В полости среднего уха — барабанной полости, находится система слуховых косточекмолоточек, наковальня и стремечко, которые передают колебания барабанной перепонки внутреннему уху. Молоточек прочно соединен с барабанной перепонкой, а стремечко входит в отверстие — овальное окно, расположенное на границе среднего и внутреннего уха. При передаче звуковых волн от барабанной перепонки к овальному окну по цепи слуховых косточек звуковое давление усиливается в 30 раз. Это связано прежде всего с большой разницей площади барабанной перепонки (0,55 см 2 ) и овального окна (0,032 см 2 ): колебания большой барабанной перепонки передаются по слуховым косточкам маленькому овальному окну, поэтому звуковое давление на единицу площади овального окна оказывается больше в сравнении с давлением на барабанную перепонку. Колебания могут уменьшаться (регулироваться) с помощью мышц среднего уха: мышцы, напрягающей барабанную перепонку, и мышцы стремени. Они уменьшают способность косточек проводить звуковые колебания к овальному окну, предохраняя внутреннее ухо от повреждающего действия громких звуков.

Полость среднего уха евстахиевой трубой соединяется с глоткой. При глотании труба открывается, обеспечивая вентиляцию полости среднего уха и уравнивая давление в нем с атмосферным. При воспалении слизистая оболочка евстахиевой трубы набухает, закрывая ее просвет. При изменении внешнего давления (в самолете, при нырянии) существует опасность разрыва барабанной перепонки. Частое глотание и нагнетание воздуха из ротовой полости уравнивают давление по обе стороны перепонки и позволяют избежать ее повреждения.

Внутреннее ухо расположено внутри лабиринта височной кости. В нем находятся орган слуха (улитка) и орган равновесия (вестибулярный аппарат) (см. рис. 5.19). Вестибулярный аппарат включает мешочек, маточку и три полукружных канала, ориентированных соответственно трем плоскостям тела.

Улитка образована тремя параллельными, свернутыми спирально каналами — лестницами: вестибулярной, или лестницей преддверия, средней и барабанной (рис. 5.20). Вестибулярная и барабанная лестницы соединяются в конце улитки посредством отверстия — геликотремы. Средняя лестница расположена между ними, от вестибулярной она отделена тонкой рейснеровой мембраной, а от барабанной — основной, или базилярной, мембраной; каналы улитки заполнены двумя жидкостями, имеющими разный ионный состав: в вестибулярной и барабанной лестницах содержится перилимфа, а в средней — эндолимфа. Разный ионный состав между пе- рилимфой и эидолимфой обеспечивает возникновение внут- риулиткового потенциала, необходимого для поддержания

Читать еще:  Совместимость знаков мужчина Рак и женщина Рак

Рис. 5.20. Строение улитки:

а, 6 — поперечное сечение через улитку; в — кортиев орган; г — стереоцилии волосковых клеток активности рецепторных клеток внутреннего уха. Колебательные движения системы косточек среднего уха через овальное окно передаются перилимфе вестибулярной лестницы, затем (через геликотрему) — в барабанную лестницу и на мембрану круглого окна, которым она заканчивается. Так как воздух сжимается, а иерилимфа — нет, давление этих двух сред должно быть согласовано. Этот процесс называется согласованием импеданса и достигается тем, что косточки передают колебания с большей площади барабанной перепонки на малую площадь овального окна.

Слуховые рецепторы расположены в средней лестнице внутреннего уха, в кортиевом органе (см. рис. 5.20). Он включает основную мембрану, на которой находятся ряды рецепторных и опорных клеток, и нависающую над ними покровную, или тенториальную, мембрану.

Слуховыми рецепторными клетками являются волосковые клетки, имеющие на верхней поверхности микроворсинки, называемые иногда ресничками. Различают внутренние и наружные волосковые клетки. Наружные волосковые клетки (их около 20 000) располагаются тремя рядами, 3500 внутренних волосковых клеток образуют один ряд. Волоски на рецепторных клетках (стереоцилии) расположены в форме буквы «V». У наружных волосковых клеток реснички разные по высоте. Кончики самых высоких из них погружены в покровную мембрану. Сверху поверхность покровной мембраны контактирует с эндолимфой.

Звуковые колебания, передаваемые стремечком на овальное окно улитки, приводят в движение перилимфу и обе мембраны, ограничивающие среднюю лестницу. Таким образом звуковые колебания передаются эндолимфе и контактирующей с пей покровной мембране. Ее колебания приводят к смещению (наклону) ресничек волосковых клеток, при этом открываются ионные каналы, что ведет к изменению мембранного потенциала волосковых клеток. Электрический потенциал рецепторной клетки передается окончаниям чувствительных волокон слухового нерва через синапсы в основании каждой клетки и вызывает их возбуждение. Эти волокна являются отростками биполярных нейронов спирального ганглия — первого нейрона слуховой системы, расположенного в центральном канале улитки (см. рис. 5.20). Вместе с волокнами вестибулярного нерва они образуют преддверно-улитковый нерв (VIII пара черепномозговых нервов).

Слуховые волокна преддверно-улиткового нерва, иногда называемые слуховым нервом, входят в ствол мозга и достигают кохлеарных (улитковых) ядер в продолговатом мозге (рис. 5.21).

Нейроны кохлеарных ядер (второй нейрон проводящей системы) образуют многочисленные и сложные связи со многими ядрами ствола мозга, например с ядерным комплексом олив, с которыми связана биноуральная локализация звуков в пространстве. С нейронами ствола мозга связан и центробежный контроль волосковых клеток улитки: их волокна образуют на мембране рецепторных клеток эфферентные тормозные синапсы. Стимуляция эфферентных волокон угнетает ответы волосковых клеток.

Выходы ядер ствола мозга направлены к вышележащим центрам — нижним бугоркам четверохолмия среднего мозга и к медиальному коленчатому телу таламуса. На этих нейронах замыкаются рефлекторные дуги ориентировочных и сен- сомотрных реакций на звуковые стимулы. От нейронов таламуса (третий нейрон слухового сенсорного пути) слуховые импульсы направляются в первичную слуховую зону коры в височной доле больших полушарий (рис. 5.21, 5.22).

Клетки первичной слуховой коры участвуют в распознавании звуковых образов, что необходимо для понимания речи. Повреждение этих участков затрудняет как определение источников звука, так и процесс понимания речи.

Рис. 5.21. Центральные пути слуховой системы

Рис. 5.22. Участки слуховой коры больших полушарий, активированные при действии слуховых стимулов (метод МРТ):

а правое полушарие; б левое полушарие; в — локализация источника звука

Слуховая сенсорная система: строение, функции

Слух является органом чувств человека, который способствует психическому развитию полноценной личности, ее адаптации в социуме. Со слухом связанны звуковые языковые общения. С помощью слухового анализатора человек воспринимает и различает звуковые волны, состоящие из последовательных сгущения и разрежения воздуха.

Слуховой анализатор состоит из трех частей: 1) рецепторного аппарата, содержащегося во внутреннем ухе; 2) проводящих путей, представленных восьмой парой черепно-мозговых (слуховых) нервов; 3) центра слуха в височной доле коры больших полушарий.

Слуховые рецепторы (фонорецепторы) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через всю систему звукопроводящих и звукоусиливающих частей.

Ухо – это орган слуха, который состоит из 3-х частей: внешнего, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей. Внизу дополнена складкой – мочкой, которая заполнена жировой тканью.

Наружный слуховой проход (2,5 см), где происходит усиление звуковых колебаний в 2-2,5 раза, выслан тонкой кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и содержит пигмент. Волоски и ушная сера выполняют защитную роль.

Среднее ухо состоит из барабанной перепонки, барабанной полости и слуховой трубы. На границе между наружным и средним ухом находится барабанная перепонка, которая внешне покрыта эпителием, а изнутри слуховой оболочкой. Звуковые колебания, которые подходят к барабанной перепонке, заставляют ее колебаться с той же частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены слуховые косточки, соединенные между собой – молоточек, наковальня и стремя. Через системы слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, которые уменьшают размах звуковых колебаний и увеличивают их силу.

Барабанная полость соединена с носоглоткой с помощью евстахиевой трубы, которая поддерживает одинаковое давление извне и изнутри на барабанную перепонку.

На рубеже среднего и внутреннего уха является перепонка, которая содержит овальное окно. Стремя прилегает к овальному окну внутреннего уха.

Внутреннее ухо находится в полости пирамиды височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани. Между костным и перепончатыми лабиринтами содержится жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна, есть еще круглое окно, которое делает возможным колебания жидкости.

Костный лабиринт состоит из трех частей: в центре – преддверие, спереди от него улитка, а сзади – полукружные каналы. Внутри среднего канала улитки, в улитковом ходе содержатся звуковоспринимающий аппарат – спиральный или кортиев орган. Он имеет основную пластинку, которая состоит примерно из 24 тыс. фиброзных волоконец. На основной пластинке вдоль нее в 5 рядов расположены опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой. Волосковые клетки охватываются нервными волосками улитковой ветви слухового нерва. В продолговатом мозге содержится второй нейрон слухового пути, дальше этот путь идет, в основном перекрещиваясь, к задним буграм четверохолмия, а от них в височную область коры, где расположена центральная часть слухового анализатора.

Для слухового анализатора звук является адекватным раздражителем. Все вибрации воздуха, воды и другого упругого среды делятся на периодические (тоны) и непериодические (шумы). Тона бывают высокие и низкие. Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное количество колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, поделенную на количество полных колебаний, осуществляемых тело, которое звучит, в секунду.

Человеческое ухо воспринимает звуковые колебания в пределах 16-20 000 Гц, сила которых выражается в децибелах (дБ). Звуковые колебания частотой более 20 кГц человек не слышит. Это – ультразвуки.

Звуковые волны – это продольные колебания среды. Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц. Звук характеризуется тембром или окраской.

Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В 1863 году Гельмгольц предложил резонансную теорию слуха. Воздушные звуковые волны, попадая в наружный слуховой проход, обуславливают колебания барабанной перепонки, далее колебания передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, содержащейся между костным и перепончатыми лабиринтами завитки. Звуковые волны могут передаваться и через воздух, содержащийся в среднем ухе.

По резонансной теории, колебания эндолимфы вызывают колебания основной пластинки, волокна которой имеют разную длину, настроенные на разные тона и составляют собой набор резонаторов, которые звучат в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основы улитки, а длинные у верхушки.

Во время колебания соответствующих резонирующих участков основной пластинки колеблются и расположенные на ней чувствительны волосковые клетки. Мельчайшие волоски этих клеток касаются при колебании покровной пластинки и деформируются, что ведет к возбуждению волосковых клеток и проведения импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции волокон основной мембраны нет, то одновременно начинают колебаться и соседние волокна, что соответствует обертонам. Обертон – звук, число колебаний которого в 2, 4, 8 и т.д. раз превышает число колебаний основного тона.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине возбудимость возрастает. Это адаптация. Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный шум не только ведет к потере слуха, но и вызывает психические нарушения у людей. Специальными опытами на животных доказана возможность появления “акустического шока” и “акустических коряг”, порой смертельных.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния “школьного” шума на организм школьника

Воспаление уха – отит. Чаще всего встречается отит среднего уха – опасная болезнь, потому что рядом с полостью среднего уха – головной мозг и его оболочки. Отит чаще всего возникает как осложнение гриппа, острых респираторныхзаболеваний; инфекция из носоглотки может перейти по евстахиевой трубе в полость среднего уха. Отит протекает как тяжелое заболевание и проявляется сильными болями в ухе, высокой температурой тела, сильной головной болью, значительным снижением слуха. При упомянутых признаках необходимо немедленно обратиться к врачу. Профилактика отита: лечение острых и хронических болезней носоглотки (аденоидов, насморка, гайморита). Если возник насморк, нельзя сильно сморкаться, чтобы инфекция через евстахиеву трубу попала в среднее ухо. Нельзя сморкаться одновременно обеими половинами носа, а надо делать это поочередно, прижимая крыло носа к носовой перегородки.

Глухота– полная потеря слуха на одно или оба уха. Она может быть приобретенной или врожденной.

Приобретенная глухота чаще всего является следствием двустороннего отита среднего уха, который сопровождался разрывом обеих барабанных перепонок или тяжелому воспалению внутреннего уха. Глухота может быть вызвана тяжелыми дистрофическими поражениями слуховых нервов, которые часто связаны с профессиональными факторами: шумом, вибрацией, действием паров химических веществ или с травмами головы (например, в результате взрыва). Частой причиной глухоты является отосклероз– болезнь, при которой слуховые косточки (особенно стремя) становятся неподвижными. Эта болезнь была причиной глухоты у выдающегося композитора Людвига Ван Бетховена. К глухоте может привести бесконтрольное применение антибиотиков, которые негативно действуют на слуховой нерв.

Врожденная глухота связана с врожденным нарушением слуха. причинами которого могут быть вирусные болезни матери во время беременности (краснуха, корь, грипп), бесконтрольное употребление ею некоторых лекарств, особенно- антибиотиков, употребление алкоголя, наркотиков, курения. Рожденный глухой ребенок, никогда не слыша речи, становится глухонемым.

Гигиена слуха – система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слухового анализатора, способствует нормальному его развитию и функционированию.

Читать еще:  Инфекционный токсикоз у детей

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха разной степени, неспецифическое – в различных отклонениях в деятельности ЦНС, расстройствах вегетативной реактивности, эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта. У лиц молодого и среднего возраста при уровне шума 90 дБ (децибел), который длится в течение часа, снижается возбудимость клеток коры головного мозга, ухудшаются координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухомоторных реакций. По такой же продолжительности работы в условиях воздействия шума, уровень которого составляет 96 дБ, наблюдается еще более резкие нарушения корковой динамики, фазовые состояния, запредельной торможения, расстройства вегетативной реактивности. Ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели труда. Работа в условиях воздействия шума, уровень которого – 120 дБ, может вызвать нарушения в виде астенических неврастеническим проявлений. Появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. Происходят изменения в сердечно-сосудистой системе: нарушается тонус сосудов и ритм сердечных сокращений, возрастает или снижается артериальное давление.

На взрослых и особенно детей чрезвычайно негативное влияние (неспецифический и специфический) производит шум в помещениях, где включены на полную громкость радиоприемники, телевизоры, магнитофоны и тому подобное.

Сильно влияет шум на детей и подростков. Изменение функционального состояние слухового и других анализаторов наблюдается у детей под влиянием “школьного” шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 110 дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, во время перерывов может достигать 95 дБ.

Шум, который не превышает 40 дБ, не вызывает негативных изменений в функциональном состоянии нервной системы. Изменения заметны при воздействии шума, уровень которого составляет 50-60 дБ. Согласно данным исследований, решения математических задач требует при шумовой громкости 50 дБ на 15-55%, 60 дБ – на 81 -100% больше времени, чем к действию шума. Ослабление внимания школьников в условиях воздействия шума указанной громкости достигало 16%. Снижение уровней “школьного” шума и его неблагоприятного воздействия на здоровье учащихся достигается благодаря ряду комплексных мероприятий:строительных, технических и организационных.

Так, ширина “зеленой зоны” со стороны улицы должна быть не менее 6 м. Целесообразно вдоль этой полосы на расстоянии не менее 10 м от здания посадить деревья, кроны которых задерживать распространение шума.

Важное значение в уменьшении “школьного” шума имеет гигиенически правильное расположение учебных помещений в здании школы. Мастерские, спортивные залы размещаются на первом этаже в отдельном крыле или пристройке.

Гигиеническим стандартам, направленным на сохранение зрения и слуха учащихся и учителей, должны отвечать размеры учебных помещений: длина (размер от доски до противоположной стенки) и глубина классных комнат. Длина классной комнаты, не превышает 8 м, обеспечивает ученикам с нормальной остротой зрения и слуха, которые сидят на последних партах, четкое восприятие речи учителя и ясное видение того, что написано на доске. По первым и вторыми партами (столами) в любом ряду отводятся места для учащихся с ослабленным слухом, поскольку речь воспринимается от 2 до 4 м, а шепот – от 0,5 до 1 м. Восстановить функциональное состояние слухового анализатора и предупредить сдвиги в других физиологических системах организма подростка помогают небольшие перерывы (10-15 мин.).

Физиология сенсорных систем: слуховая система

Слуховая система

Слуховая система человека относится к дистантным сенсорным системам. Анатомические особенности слуховой системы чело­века позволяют воспринимать акустические (звуковые) колеба­ния внешней среды.

Звук – это колебания, распространяющиеся в воздушной среде (или другой среде) в виде продольной волны давления со ско­ростью 335 м/с. Действие амплитуды звуковых колебаний на­зывается уровнем звукового давления и измеряется в децибелах. Сила звука измеряется в Вт/м 2 , а частота колебаний в Гц.

Звуковые колебания возбуждают слуховые рецепторы, находя­щиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация через ряд последовательных отделов передается в слуховую область коры большого мозга.

Наружное ухо. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке, отделяющей наружное ухо от среднего.

Среднее ухо: молоточек, наковальня и стремечко последовательно передают колебания барабанной перепонки во внутрен­нее ухо (на мембрану овального окна). Благодаря геометрии косточек стремечку передаются колебания барабанной перепон­ки уменьшенной амплитуды, но увеличенной силы. Поверхность стремечка в 22 раза меньше поверхности барабанной перепонки, что во столько же раз увеличивает его давление на мембрану овального окна. В СУ расположены 2 мышцы: напрягающая ба­рабанную перепонку (ограничивает амплитуду ее колебаний при сильных звуках) и стременная (фиксиксирует стремечко). Реф­лекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды.

Внутреннее ухо.

Улитка – костный спиральный канал, образующий 2,5 витка. Диаметр костного канала у основания улитки 0.04 мм, а на вер­шине – 0.5 мм. По всей длине, почти до самого конца, костный канал разделен 2-мя перепонками: более тонкой – преддверной мембраной (вестибулярной, мембраной Рейссиера) и более плотной и упругой — основной мембраной. На вершине улитки эти мембраны соединяются, и в них имеется овальное отверстие.

Вестибулярная и основная мембраны разделяют костный канал улитки на 3 хода:
– верхний,
– средний
– нижний.

Верхний канал (лестница преддверия) через овальное отверстие сообщается с нижним каналом (барабанной лестницей). Эти каналы заполнены перилимфой, напоминающей цереброспиналь­ную жидкость. Полость среднего канала не сообщается с полостью других каналов и заполнена эндолимфой, в составе кото­рой в 100 раз больше калия и в 10 раз меньше натрия, чем в перилимфе (она заряжена положительно по отношению к перилимфе).

Внутри среднего канала на основной мембране расположен спи­ральный (кортиев) орган, содержащий рецепторные волосковые клетки (вторичночувствующие механорецепторы), 2-х видов. Внутренние и наружные, отделенные друг от друга кортиевыми дугами. Внутренние располагаются в один ряд, их общее число 3500. Наружные в 3-4 ряда; их общее число 12000-20000.

Каждая волосковая клетка имеет удлиненную форму, один по­люс фиксирован на основной мембране, второй – находится в полости перепончатого канала. На конце этого полюса находятся стереоцилии (волоски), которые омываются эндолимфой и кон­тактируют с покровной (текториальной) мембраной.

Передача звуковых колебаний происходит по каналам улитки. Колебания мембраны овального окна преддверия вызывают ко­лебания перилимфы в верхнем и нижнем каналах улитки, кото­рые доходят до круглого окна улитки. Звуковые колебания, рас­пространяются по перилимфе и эндолимфе верхнего и среднего каналов в виде бегущей волны, приводят в движение основную мембрану и через нее передаются на перилимфу нижнего кана­ла.

Слуховая рецепция.

При колебаниях основной мембраны, наиболее длинные волоски касаются покровной мембраны и наклоняются. Отклонение во­лоска на несколько градусов приводит к натяжению тончайших нитей (микрофиламент), связывающих верхушки соседних во­лосков клетки. Это натяжение открывает от 1 до 5 ионных ка­налов в мембране стереоцилии. Через открытый канал начинает течь калиевый ток. Электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс после действия зву­ка.

Важным механизмом усиления сигнала на рецепторном уровне слуховой системы, является механическое взаимодействие всех стереоцилий (около 100) каждой колосковой клетки. Они связа­ны между собой в пучок тонкими поперечными нитями. Когда сгибается 1 или несколько длинных волосков, они тянут за со­бой все остальные. В результате открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Деполяризация пресинаптического окончания волосковой клет­ки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Медиатор вызывает ВПСП на ПСМ афферентного волокна, и далее генерацию распространяющихся импульсов.

Электрические явления в улитке.

Существует 5 электрических феноменов в улитке. Два из них (мембранный потенциал слуховой рецепторной клетки и потен­циал эндолимфы) не связаны с действием звука.

Под влиянием звука возникают:
– микрофонный потенциал улитки,
– суммационный потенциал
– потенциалы слухового нерва.

Микрофонный потенциал улитки.

Если ввести в улитку электроды, соединить их через усилитель с динамиком и подействовать на ухо звуком, динамик точно воспроизведет этот звук. Регистрируемый здесь электрический потенциал назван кохлеарным микрофонным потенциалом. До­казано, что он генерируется на мембране волосковой клетки в результате деформации волосков.

В ответ на сильные звуки большой частоты происходит стойкий сдвиг исходной разности потенциалов – суммационный потен­циал (СП). Различают положительный и отрицательный СП. Их интенсивности пропорциональны силе звукового давления (силе прижатия волосков к покровной мембране). Отрицательный СП генерируется внутренними волосковыми клетками, а микрофон­ный и положительный СП – наружными.
В результате возбуждения рецепторов, происходит генерация импульсного сигнала в волокнах слухового нерва.

Анализ частоты звука (высоты тона). Способность человека различать высоты последовательно слышимых тонов. Например, в оптимальной области звук 1 кГц порог различения частот со­ставляет 0,3%, т.е. около 3 Гц.

Звуковые колебания разной частоты вовлекают в колебательный процесс основную мембрану не одинаково на всем ее протяже­нии. Локализация амплитудного максимума бегущей волны на основной мембране зависит от частоты. Т.е. при действии зву­ков разной частоты в процесс возбуждения вовлекаются разные рецепторные клетки (пространственное кодирование).

При действии низких и средних частот (ниже 2 кГц) осуществ­ляется и временное кодирование: частота следования импульсов в слуховом нерве повторяет частоту звуковых колебаний. На всех уровнях слуховой системы у отдельных нейронов суще­ствует настройка на определенную частоту: т.е. существует оп­тимальная (или характеристическая) частота звука, на которую порог реакции нейрона минимален.

Анализ интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов.

При слабом стимуле в реакцию вовлекаются наиболее чувстви­тельные нейроны, при усилении звука – нейроны с более высо­кими порогами реакций. Пороги возбуждения внутренних и на­ружных рецепторных клеток также неодинаковы: Возбуждение внутренних возникает при большей силе звука.

Слуховые ощущения частоты. Определяются частотной полосой ощущения – от 16 до 20000 Гц. Ниже 20 Гц – это инфразвуки, а выше 16000 Гц – ультразвуки (10-11 октав музыкального ря­да).
Слуховая чувствительность. Пороги слышимости зависят от частоты звука. Слух человека максимально чувствителен в об­ласти главного речевого поля, а именно в полосе частот 1000- 4000 Гц. Ниже и выше чувствительность звукового восприятия значительно ниже.

Громкость звука.

Кажущаяся громкость отличается от физической силы. Бел – десятичный логарифм отношения действующей интенсивности звука к пороговой интенсивности (lg I/I). Децибел (дБ) – 0,1 бела.
Дифференциальный порог громкости в диапазоне 1000 Гц – 0,59 дБ, а на краях шкалы доходит до 3 дБ.
Максимальный уровень громкости звука, вызывающий болевое ощущение – 130-140 дБ над порогом слышимости.

На частоте 1кГц оптимальный УЗД (уровень звукового давле­ния) составляет 70 дБ. При резком увеличении звука до 130 дБ можно вызвать звуковую травму, которая характеризуется ощущениями боли в ушах и обратимой утратой слуха. Это явление можно получить при длительном воздействии звука 90 дБ.

Адаптация. Длительное действие звука на ухо приводит к зна­чительному снижению чувствительности к нему. Нейронные ме­ханизмы типа латерального и возвратного торможения.

Бинауральный (пространственный) слух — способность опреде­лять положение источника звука в пространстве. Это свойство основано на слушании двумя ушами, т.е. на способности оцени­вать интероуральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Острота бинаурального слуха у человека очень высока. Ис­точник звука определяется с точностью до 1 углового градуса, а задержка звука дифференцируется в 11мкс.

Ссылка на основную публикацию
Adblock
detector